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Further Monotonicity Properties for
Specialized Renewal Processes.

by
Mark Brown

Summary. Define Z(t) to be the forward recurrence time at t for a
renewal process with interarrival time distribution, F, which is assumed
to be IMRL (increasing mean residual life). It is shown that E¢(Z(t)) is
increasing in t 2 0 for all increasing convex ¢. An example demonstrates
that Z(t) is not necessarily stochastically increasing nor is the renewal
function necessarily concave. Both of these properties are known to

hold for F DFR (decreasing failure rate).

1. Introduction. It is shown in Brown [3] that if F is IMRL (increasing
mean residual 1ife) and Z(t) is the forward recurrence time at t for a
renewal process with interarrival time distribution F, then EZ(t) is in-
creasing in t 2 0. In this paper the result is strengthened to E¢(Z(t))
increasing in t for all increasing convex ¢. An example is given to
show that the result cannot be extended to general increasing functions,
equivalently that Z(t) need not be stochastically increasing in t. The
same example also shows that F IMRL does not imply that the renewal func-
tion M(t) is concave, nor that EA(t), the expected renewal age at time t,
in increasing. The table below summarizes the monotonicity results of

this paper and (3].




IMRL

DFR

Z(t)

(forward recurrence time)

A(t)
(renewal age)

M(t)
(renewal function)

E¢(Z(t))t for increasing
convex ¢; Z(t) not necessarily
stochastically increasing

EA(t) not necessarily increasing

n(t)-%f in t 2 0; M(t) not
necessarily concave.

Z(t) stochastically
increasing in t 2 0.

A(t) stochastically
increasing in t 2 0.

M(t) concave. The
renewal density
exists on (0, =)
and is decreasing.

The result E¢(Z(t)+ for increasing convex ¢ does not appear to be
provable by the methodology employed in [3]. A new approach is followed

based on a renewal theory identity (theorem 1) which may be of indepen-

dent interest and use.
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2. Definitions and preliminaries. A random variable X with c.d.f. F

is defined to have an IMRL (increasing mean residual life) distribution

on [0, ») if y; = EX < =, F(0-) = 0, F(0) < 1, and E(X - t|X > t) is

increasing in t 2 0. The term increasing (decreasing) is used for mono-
tone non-decreasing (non-increasing). X is defined to have a DFR distri-
bution on [0, =) if F(0-) = 0, F(0) < 1, and X - t|X > t (the conditional
distribution of X - t given that X > t) is stochastically increasing in

t 2 0. Lemma 1 below reviews several properties of IMRL and DFR distri-

butions.

Lemma 1 (1) F DFR <= log F(x) convex <= F is absolutely continuous on

(0, =) and possesses a version of its pdf, f, for which the hazard function

h(x) = ék)- is decreasing.
F(x)

(11) F DFR with finite mean implies F IMRL; F IMRL does not imply F DFR.

X
(111) F IMRL <> G DFR where G(x) = %{i(y)dy.

(iv) F IMRL <=> E[¢(X - t)lx > t)t in t 2 0 for all convex increasing ¢.
(v) Mixtures of DFR distributions are DFR. A mixture of IMRL distri-
butions possessing a finite mean is IMRL.

(vi) Define Z(t) to be the forward recurrence time at t for a renewal
process with interarrival time distribution F. Then F IMRL (DFR) implies

Zz(t) IMRL (DFR).

Proof (1) The fact that a DFR distribution on [0, ») is absolutely con-
tinuous on (0, =) (it can have an atom at {0}) can be proved by following
an argument of Barlow and Proschan [1] p. 77. The other implications

are straightforward.
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(i1) The first part is trivial. The distribution discussed in section
5 (i) is IMRL but not DFR.

(111) E(X -t|]X> ¢t) = 1/ (t), where h; is the hazard function of G.

(iv) Let ¢ be an increasing convex function. Then

x
¢(x) = ¢(0) + [¢'(y)dy with ¢'+. The expectations
0

BPQ(X), srto(x -t)IX> ¢t)], Ecto'(x - t)]X > t] are all well defined
with += as a possible value. If E¢(X) = = then EF[O(X -—t)|X>tl=w
for all t and the result is trivially true. If BFQ(K) < » then all the
above expectations are finite. Integration by parts gives:

(1) Eglo(X - £)[X > €1 = ¢(0) + EL(X - t|X > )E,[¢"(X - Q)X > ¢]
Since G is DFR (iii), ¢' is increasing, and EF(X - :lx > t)+, the
result follows. ?
w) The closure of DFR under mixtures is found in Barlow and Proschan

(1) p. 103. Consider F(t) = f?;(:)dP(c). where Fa is IMRL, and P a pro-

bability measure. Define p(a) = Ep X and E;(t) - ;%;;-Ii;(x)dx. Then
a t

i ey L M
; G(t) = %-ff(x)dx = f&;(t)(;EdP(u)). Each Ga is DFR by (iii), therefore
t

G is a mixture of DFR's and is therefore DFR. By (iii) F is IMRL.

(vi) The distribution of Z(t) is a mixture of the distributions of

i
|
|
?
!

{X-8|X>s,0<s < t). Thus the result for F DFR follows directly from
(v). For F IMRL we can apply (v) and obtain the desired result provided

that we show that EZ(t) < «», But

EZ(t) < E(X - t]|X > t) < :J-‘-—— JFx)dx s =¥ < =,
F(t) t F(t)
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3. ldentity. We will be working with two renewal processes, one with

interarrival time distribution F, the other with distribution G where

G(t) = %~;§(x)dx. It is important to note that the renewal process with

interarrigal time distribution G is not the stationary remewal process

corresponding to F (whichwould have its first renewal governed by G and

all subsequent renewals governed by F) but rather a renewal process with

all interarrival times distributed as G. Define ZF(t)(zc(t)) to be the

forward recurrence time at t for the renewal process with interarrival
(x)

(x)
time distribution F(G). Define Fz ( ) Pr(zp(t) > x), and gzc(t) to be

the pdf of zc(t) evaluated at x. Note that G is absolutely continuous

and thus so is Zc(t). Define HF’ Mc to be the renewal functions for the

two processes. Both start with a renewal epoch at:{O}, so that for example

« (k)

(k)
Hr(t) = I F (t) rather than 2 F (t). By Wald's identity Ezp(t) = uur(t) - t.

k=0 k=1
Since Hr(t) - t is of bounded variation on {0, t] it makes sense to

talk about dEZF(y) = udMP(y) - dy. Note that dE(ZF(y)) has an atom of
size p/F(0) at y = 0.

In theorem 1 below we use the following version of 8, (t)
x _1¢f
(2) 82,(t) ™ ;! (t - y + x)aM.(y)
Thus we regard 3zc(t) as having the above well defined value for
each x rather than as an equivalence class of a.e. equal functions.

Theorem 1 For all t =20, x 2 0:

F®Lof. @ . x) o $2)
@ F @ {)-gzc(t_y)dE(Z ) ‘(0)82(:“) I ] 87 (e )

T
o b e B U0 s o st S ol N




-6 -
Proof For s > 0 define the following Laplace transforms:

2 T -st (x) X -st= (x)
*1(3| x) t!Oe Szc(t)dt» WZ(S. x) t£°e Fir(t)dt.

(s) = T e 2 F(t + x)dt, y.(s) = T e %M (v),
& t£0 HF t!'O ‘mF

Vp(s) = J e‘“dl"(t), and similarly g (s) and ve(s).
t=0

By (2):

(%) WI(S. x) = u'lxx(s)w (s)

"

t
Noting that T, (x) - ﬁ(t -y + x)dH.F(y) it follows that:
Ze(t) 9

(5) ¥,(s, x) = “x(s)*ués)

From (4) and (5) we obtain:

vyls,0 W

vl(s.x) 3 wués)

(6)

From (6) we see that 02/01 is independent of x. This suggests that

F is the convolution of g and a function which does not depend
Z(t) 2,(*)

on X. Next:

) (B =u@@ - v en™

(8 () =( - ve(e) ™ = (1 - LA - yy(eN/euD™

From (6), (7) and (8):

Oz(lpx)

-1 -1
(9) ;I?;:;y'- H(l = Yp(s)) © -8




g

But u(l - *F)'l is the Laplace transform of w‘és) and s71 15 the

Laplace transform of f(t) = t. Thus wugs) /wu(s) is the Laplace transform
G

of uHr(t.) -t= Ezr(t). The result now follows.
Splitting the range of integration [0, t] into {0} and (0, t] and

recalling that dEzr(y) has an atom of size u/F(O) at 0, gives the alter-
native expression in (1). 0

el el e S e i ST ol N R
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4. Monotonicity Result. The main monotonicity result is now derived.

Theorem 2 If F is IMRL then E¢(Z(t)) is increasing in t 2 0 for all

increasing convex functions ¢.
t

Proof Since ¢ is an increasing convex function, ¢(t) = ¢(0) + f¢'(x)dx
0

with ¢'t. It is straightforward to show that the expectations E(o(zF(:))),
B(¢'(zc(t))), EGO'(X) are all well defined and are either finite or equal
to +» depending on whether BF¢(X) is finite or equals +w.

Start with (3) (the identity of theorem 1), multiply both sides by
¢'(x) and integrate x from 0 to ». The left side, after integration by
parts reduces to E¢(zp(t)) - ¢(0). It is finite (equals +») if and only

if E¢(X) is finite (equals +»). The right side, after interchanging the

t
order of integration reduces to I E¢'(Zc(t - y))dE(ZF(y)), and it too is
0-

finite (equals +=) if and only if E¢(X) is finite (equals 4+=). Thus:
t
(10) E$(Z(t)) = 4(0) + [ Ep'(2,(t - y)dE(Z,(y))
0-

Since ¢' is increasing and G is DFR (lemma 1 (iii)) it follows from Brown
(3], theorem 3,that E¢'(Z (t - y)) is increasing in t for each y. Since
EZ,(y) is increasing (Brown [3], theorem 2), ¢' 2 0, and E¢'(Z,(t - y)) is

increasing, it follows from (10) that EQ(ZF(t)$. 0
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5. Examples. (1) In this example F is IMRL, Z(t) is not stochastically
increasing, m is not decreasing (and thus M is not concave) and EA(t) is
not increasing. The hazard function of F is given by

1 0sx<1
h(x) = 4 1 <sx<2
.01 x22

For t 2 1, X - t|X > t is stochastically increasing and thus increasing
in mean. For 0 st s 1, E(X- t]|X > t) = 1 + ce® where

4

c=e1(99.75¢% - .75) > 0. Thus F is IMRL.

For 0 < § <1, Pr(2(0) > §) = e-G. For t = 1, the hazard function,

h;:i). for each x ¢ [0, 8] is a weighted average of 1 and 4, with 4 receiv~
ing positive weight. Thus hé?i)> 1 for x ¢ [0, 6] and consequently

Pr(z(l) > 8) < %

= Pr(Z(0) > §). Therefore Z(t) is not stochastically
increasing.

Finally for s < 1, E[A(1 + e)lA(l) =88] =5+ ¢e(l - s) + o(e), while

E(A(L + €)|A(1) = 1) =1 - 3¢ + o(e). Thus EACL +€)) = 1 - e 1= 2ce™} 4 o(e) =

EA(1) -2¢e”} + o(e); thus gEEA(t) i =-2a"L gna EA(t) is not increasing.
t=1

(i1) Berman [2] p. 429 raised the question of whether F NWU implies
that the renewal density is decreasing. In the example below F is DFRA
(and thus NWU) and the renewal demsity is not decreasing. Recall that

F 18 defined to be NWU if X - t|X > t is stochastically greater than X

~1nF(t)
t

for all t 2 0, and DFRA if nft) = is decreasing in t > 0.

| 100 0<x<1
F is defined by the hazard function h(x) = { 1 lsx<2
2 x 22

Clearly F is DFRA (and thus NWU). Define p(t) = Pr(l < A(t) < 2). Note

that p(2) = p(2-) - Pr(N(2) = 0) = p(2-) - e 101, mnus
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m(2-) = 100(1 - p(2-) + p(2-)while m(2) = 100(1 - p(2-)) + (p(2-) - e 10y 4

-101 _ m(2-) + e-1°1. It follows that for some ¢ > 0, m(t) > m(s) for

| 2e
2+e>t>2>s>2-¢, and thus m is not decreasing.

(1i1) It appears that the prospects are not good for deriving monotonicity
results for renewal processes with IFR interarrival times. Berman [2]
points out that the convolution of three exponentials with common para-
meter does not have an increasing renewal density. Moreover, it is easy

to construct absolutely continuous IFR distributions which are arbitrarily

close to a degenerate distribution, say for example a degenerate distri-

bution at {1}. Such a distribution has a renewal function which for small

to moderate t differs little from that of the degenerate distribution at

, |
{1}. |
|
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